联系人:李锋
银行汇款
Part 01 前言
大家经常听到“电感”,“磁珠”这两个词,但是在进行电路设计时,什么时候需要用电感?什么时候需要用磁珠呢?这就需要搞清楚电感和磁珠的区别了,以下从电感和磁珠选型时的关键点来对比说明。
Part 02 工作原理对比
铁氧体磁珠:
铁氧体磁珠可减少或消除电路中的高频电磁干扰 (EMI),它的功能类似于低通滤波器,仅允许低频信号流经电路,同时消除高频噪声。铁氧体磁珠有两种类型:线绕磁珠和传统片式磁珠。铁氧体磁珠可以增强系统抗干扰能力,但不能解决所有EMI问题。铁氧体磁珠的主要参数是阻抗,阻抗的单位是欧姆(Ω)。
电感:
电感器,也称为扼流圈或线圈,当电流变化时会以电压形式感应出电磁力。铁氧体片式电感器是由多个铁氧体多层堆迭在一起形成的电感器,电感器的主要参数是电感量、顿颁搁和电流,电感量的单位为耻贬或尘贬。根据楞次定律,感应电压的变化方向与产生感应电压的电流变化相反。电感器是由绕制线圈和两个端子组成的无源磁芯。它具有在磁场中储存能量的能力。磁芯通常由铁氧体组成,有助于限制电流。
Part 03 阻抗曲线对比
磁珠的阻抗曲线:
磁珠的阻抗在低频时非常低,通常在几欧姆以下。随着频率增加,磁珠的阻抗显着增加。典型的磁珠在数百惭贬锄的频率下可以达到几十欧姆到几百欧姆的阻抗。阻抗曲线在某个频率点之后可能会趋于平缓或下降,这取决于磁珠的材料和结构特性。磁珠的阻抗曲线通常没有明显的谐振峰值,因为其设计目的是提供宽频段的高频抑制。
电感器的阻抗曲线:
电感器的阻抗在低频时以直流电阻(DCR)为主,通常非常低。随着频率增加,电感器的阻抗近似线性增加,阻抗与频率成正比(Z = 2πfL)。在某个特定频率,电感器会与寄生电容产生谐振,阻抗出现尖峰,然后迅速下降。电感器的Q值较高,谐振峰值显著,适合用于谐振和滤波应用。
总结来说磁珠的阻抗曲线更平滑,适合宽频段的高频噪声抑制。电感器的阻抗曲线有明显的谐振峰值,适合用于谐振和高蚕滤波应用。
磁珠的单位是Ω,可以把磁珠理解成电阻,磁珠通过将高频交流信号转换成热能来消耗这些信号,电感的单位是贬,电感器的主要功能是储存能量,因此它是一种储能元件。它能够平滑电流变化,并在电路中起到滤波和能量储存的作用。主要用于抑制传导干扰,通过储存并逐渐释放电能来平滑电流波动。
Part 04 为什么辐射使用磁珠,传导使用电感?
EMC中有两项重要的测试就是传导测试CE和辐射测试RE,这两项测试时如何选择磁珠和电感呢? 磁珠在高频下的阻抗增加显著,使其非常适合在高频范围内工作。由于电磁辐射干扰主要是高频信号,磁珠可以有效吸收这些高频成分,减少电磁辐射。磁珠的频率响应较宽,在较宽的频率范围内都能提供有效的抑制,这对宽带高频噪声尤为重要。
电感器的阻抗随着频率的增加而增加,在较低频率范围内表现出良好的滤波特性。传导干扰通常是较低频率的干扰信号,电感器的这种特性使其非常适合用于抑制传导干扰。